Time-Dependent Subduction Zone Setup#
Authors: Cameron Seebeck, Cian Wilson
Recalling our implementation strategy we are following a similar workflow to that seen in the background examples.
we will describe the subduction zone geometry and tesselate it intro non-overlapping triangles to create a mesh
we will declare function spaces for the temperature, wedge velocity and pressure, and slab velocity and pressure
using these function space we will declare trial and test functions
we will define Dirichlet boundary conditions at the boundaries as described in the introduction
we will describe discrete weak forms for temperature and each of the coupled velocity-pressure systems that will be used to assemble the matrices (and vectors) to be solved
we will set up matrices and solvers for the discrete systems of equations
we will solve the matrix problems
We have already seen and tested the implementation of all these steps for the steady state cases. In this section we consider steps 5-7 for the time-dependent versions. First, in this notebook we derive a new base time-dependent TDSubductionProblem class from the SubductionProblem class we implemented in notebooks/03_sz_problems/3.2e_sz_problem.ipynb.
Preamble#
Let’s start by adding the path to the modules in the python folder to the system path (so we can find the our custom modules).
import sys, os
basedir = ''
if "__file__" in globals(): basedir = os.path.dirname(__file__)
sys.path.append(os.path.join(basedir, os.path.pardir, os.path.pardir, 'python'))
Let’s also load the module generated by the previous notebooks to get access to the parameters and functions defined there.
from sz_problems.sz_params import default_params, allsz_params
from sz_problems.sz_slab import create_slab
from sz_problems.sz_geometry import create_sz_geometry
from sz_problems.sz_problem import SubductionProblem, StokesSolverNest, TemperatureSolver
Then let’s load all the required modules at the beginning.
import geometry as geo
import utils
from mpi4py import MPI
import dolfinx as df
import dolfinx.fem.petsc
from petsc4py import PETSc
import numpy as np
import scipy as sp
import ufl
import basix.ufl as bu
import matplotlib.pyplot as pl
import copy
import pyvista as pv
import pathlib
output_folder = pathlib.Path(os.path.join(basedir, "output"))
output_folder.mkdir(exist_ok=True, parents=True)
TDSubductionProblem class#
We build on the SubductionProblem class implemented in notebooks/03_sz_problems/3.2e_sz_problem.ipynb, deriving a TDSubductionProblem class that implements time-dependent versions of the temperature equations.
5. Equations#
The function SubductionProblem.stokes_forms implements the Stokes equations for all our problems, including the time-dependent cases. Here we need to override the equivalent function for temperature (temperature_forms) given the time-dependent temperature advection-diffusion equation
which we wish to convert into bilinear, \(S_T = S_T(T_t, T_a)\), and linear, \(f_T = f_T(T_t)\), forms, such that:
Due to the variation of the material parameters and the velocity functions across the domain, \(S_T\) is compiled from several integrals of different subregions of the domain
Meanwhile \(f_T\) depends on whether the case has over-riding oceanic
or continental
crust.
The time-dependent equations add new parameters for the time-stepping
\(\theta \in [0,1]\) controlling the implicitness and accuracy of our solution - common choices are \(\theta=0\) (“explicit Euler”), \(\theta=1\) (“implicit Euler”), and \(\theta=0.5\) (“Crank-Nicolson”)
\(\Delta t^n = t^{n+1} - t^n\) controlling the time-step between the old, \(t^n\), and new, \(t^{n+1}\) times at which the old and new solutions, \(\tilde{T}^{n}\) and \(\tilde{T}^{n+1}\) respectively, are evaluated
For convenience we add these parameters to the members of our class by overriding the members function (this isn’t strictly required but is useful for bookkeeping).
class TDSubductionProblem(SubductionProblem):
def members(self):
super().members()
# timestepping options
self.theta = None
self.dt = None
We then override the function temperature_forms to return the time-dependent weak forms of the temperature equation as outlined above.
class TDSubductionProblem(TDSubductionProblem):
def temperature_forms(self):
"""
Return the forms ST and fT for the matrix problem ST*T = fT for the time dependent
temperature advection-diffusion problem.
Returns:
* ST - lhs bilinear form for the temperature problem
* fT - rhs linear form for the temperature problem
* rT - residual linear form for the temperature problem
"""
with df.common.Timer("Forms Temperature"):
# integration measures that know about the cell and facet tags
# set the crustal conductivity and density
kc = self.kc
rhoc = self.rhoc
if self.sztype=='oceanic':
# if we are oceanic then we use the mantle values
kc = self.km
rhoc = self.rhom
# advection diffusion in the slab
STs = self.T_t*self.rhom*self.cp*(self.T_a+self.dt*self.theta*ufl.inner(self.vs_i, ufl.grad(self.T_a)))*self.dx(self.slab_rids) + \
self.dt*self.km*self.theta*ufl.inner(ufl.grad(self.T_t), ufl.grad(self.T_a))*self.dx(self.slab_rids)
# advection diffusion in the wedge
STw = self.T_t*self.rhom*self.cp*(self.T_a+self.dt*self.theta*ufl.inner(self.vw_i, ufl.grad(self.T_a)))*self.dx(self.wedge_rids) + \
self.dt*self.km*self.theta*ufl.inner(ufl.grad(self.T_t), ufl.grad(self.T_a))*self.dx(self.wedge_rids)
# just diffusion in the crust
STc = self.T_t*rhoc*self.cp*(self.T_a)*self.dx(self.crust_rids) + \
self.dt*kc*self.theta*ufl.inner(ufl.grad(self.T_t), ufl.grad(self.T_a))*self.dx(self.crust_rids)
# the complete bilinear form
ST = STs + STw + STc
fTs = self.T_t*self.rhom*self.cp*(self.T_n-self.dt*(1-self.theta)*ufl.inner(self.vs_i, ufl.grad(self.T_n)))*self.dx(self.slab_rids) - \
(1-self.theta)*self.dt*self.km*ufl.inner(ufl.grad(self.T_t), ufl.grad(self.T_n))*self.dx(self.slab_rids)
fTw = self.T_t*self.rhom*self.cp*(self.T_n-self.dt*(1-self.theta)*ufl.inner(self.vw_i, ufl.grad(self.T_n)))*self.dx(self.wedge_rids) - \
(1-self.theta)*self.dt*self.km*ufl.inner(ufl.grad(self.T_t), ufl.grad(self.T_n))*self.dx(self.wedge_rids)
fTc = self.T_t*rhoc*self.cp*self.T_n*self.dx(self.crust_rids) - \
(1-self.theta)*self.dt*kc*ufl.inner(ufl.grad(self.T_t), ufl.grad(self.T_n))*self.dx(self.crust_rids)
if self.sztype=='continental':
# if the sztype is 'continental' then put radiogenic heating in the rhs form
lc_rids = tuple([self.geom.crustal_layers['Crust']['rid']])
uc_rids = tuple([self.geom.crustal_layers['UpperCrust']['rid']])
fTc += self.T_t*self.dt*self.H1*self.dx(uc_rids) + self.T_t*self.dt*self.H2*self.dx(lc_rids)
fT = fTs + fTw + fTc
# residual form
# (created as a list of forms so we can assemble into a nest vector)
rT = df.fem.form([ufl.action(ST, self.T_i) - fT])
# return the forms
return df.fem.form(ST), df.fem.form(fT), df.fem.form(rT)
6. Matrix-Vector System#
As before will use the TemperatureSolver class, implemented in notebooks/3.2e_sz_problem.ipynb, that wraps a PETSc KSP linear solver to handle the assembly and solution of the temperature system in the next two notebooks.
Finish up#
Convert this notebook to a python module (saving first and ignoring markdown cells and those tagged as “main” or “ipy”).
from ipylab import JupyterFrontEnd
app = JupyterFrontEnd()
app.commands.execute('docmanager:save')
!jupyter nbconvert --TagRemovePreprocessor.enabled=True --TagRemovePreprocessor.remove_cell_tags="['main', 'ipy']" --TemplateExporter.exclude_markdown=True --TemplateExporter.exclude_input_prompt=True --TemplateExporter.exclude_output_prompt=True --NbConvertApp.export_format=script --ClearOutputPreprocessor.enabled=True --FilesWriter.build_directory=../../python/sz_problems --NbConvertApp.output_base=sz_tdep_problem 3.5a_sz_tdep_problem.ipynb
[NbConvertApp] Converting notebook 3.5a_sz_tdep_problem.ipynb to script
[NbConvertApp] Writing 4394 bytes to ../../python/sz_problems/sz_tdep_problem.py